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Introduction

Time series analysis is important in lots of fields including medicine, finance, business, and

entertainment. Time series analysis, widely used in technical trading today, focuses on single security

over a period of time. Time series data are sequences of data points that occur in successive order and

change over some period of time. These behaviors can change over time due to external events and/or

internal systematic changes in dynamics/distribution. In the financial field, a time series tracks the

movement of the chosen financial data points, such as a security’s, stock’s, or currency price, over a

specified period of time with data points recorded at regular intervals.[1][2] Change-point detection is an

important part of time series analysis, as the presence of a change point indicates an abrupt and significant

change in the data generating process.

In this project, we apply change point detection methods to financial time series. Since financial

crashes occur with very little warning and the noisy and non-stationary characteristics of financial data,

our goal is to record observations that undergo a change in their distribution due to changes/disorders in

the environment. If the state changes, we detect it as soon as possible, while minimizing false detections.

We wish to analyze the distributional changes and detect the change point in real-time of Bitcoin prices

and other cryptocurrencies prices, including Ethereum, Litecoin, and Ripple, using changepoint detection

methods.

Part one: Change Point Detection of Bitcoin and other Cryptocurrencies



In the usual setting, a sequence of observations x1, x2,... is drawn from the random variables X1,

X2,... and undergoes one or more abrupt changes in distribution at the unknown change points T1, T2,.... It

is usually assumed that the observations are independent and identically distributed between every pair of

change points so that the distribution of the sequence can be written as:

where the Fis represents the distribution in each segment.[3] When there is a point Ti in the time series,

such that the data before and after it has the greatest likelihood of belonging to different distributions Fi-1

and Fi, then we believe Ti is a change point. In order to constrain the likelihood of detecting there is a

change point where there is none, we let the probability of identifying a change of distributions where

there are actually no changes, i.e. Type I errors, to be below a level of significance, defined as 𝞪.

Since it’s hard to analyze and compare different cryptocurrency prices directly, we first convert

the Bitcoin prices time series to a Bitcoin daily log-returns time series. Log Return is one of three

methods for calculating return and it assumes returns are compounded continuously rather than across

sub-periods. It is calculated by taking the natural log of the ending value divided by the beginning value,

which is additive. Some properties of additive time series are easier to derive than multiplicative

processes. [4] lists some additional desirable and undesirable properties of log returns.

Figure 1. Log-return of bitcoin from 2014-09-17 to 2021-06-29



A. Univariate Time Series of Bitcoin

A changepoint occurs when the time series before and after it are distributed differently. Batch

detection and sequential detection are two types of change point detection. For Batch detection, there is

a fixed-length sequence consisting of n observations from the random variables X1,...,Xn, and it is

required to test whether this sequence contains any change points. When using batch detection, the

decision whether a change has occurred at a particular point in the sequence is made using all the

available observations, including those which occur later in the sequence. For Sequential detection, the

sequence does not have a fixed length. Instead, observations are received and processed sequentially

over time. When each observation has been received, a decision is made about whether a change has

occurred based only on the observations which have been received so far. This method works better than

batch when we are still receiving incoming data, and the time series is not yet complete. If no change is

flagged, then the next observation in the sequence is processed. The sequential formulation allows

sequences containing multiple change points to be easily handled; whenever a change point is detected,

the change detector is simply restarted from the following observation in the sequence. [3] We expect

1/alpha observations before a false alarm for sequential detection. Both of these methods are univariate,

and we use the cpm R package to implement them. We use recursion in each half of the changepoint

detected for batch to find less significant changepoints, and we recurse after the changepoint found for

sequential to find the subsequent changepoints.

The R package cpm contains an implementation of several different CPMs. Detecting changes in

sequences of Bitcoin daily log-returns time series requires nonparametric statistics and can be deployed

on any stream of continuous random variables without requiring any prior knowledge of their distribution.

We use Cramer-von-Mises, Mood, and Mann-Whitney statistics to detect general changes in distributions,

and variance and mean changes, respectively.

In order to obtain robust results, we conduct the experiments for batch detection respectively

using the level of significance 𝜶 = 0.01, 0.05, 0.1 from 2014-09-17 to present 2021-06-29. When the



alpha is smaller, the change point exists with a high confidence level, but the delay time to detect the

change point is longer. On the contrary, when the alpha is larger, we can detect the change point faster, but

the probability of false alarm is bigger.

Batch Detection: Change Points and Threshold

Cramer-von-Mises



Mood

Mann-Whitney

Figure 2.  Bitcoin change points were identified by batch detection using cpm R Cramer-von-Mises,
Mood, and Mann-Whitney methods from 2014 to the present. The green line is the price of bitcoin in



the US dollar from Yahoo from 2014-09-17 to 2021-08-19. The vertical blue lines indicate all the change
points were identified using 𝜶 = 0.01. We did not detect any change point using Mann-Whitney because
the threshold is relatively high. The changepoints for 𝜶 = 0.05, 0.1 are graphed in Appendix D. For all
detailed change point time, please see Appendix table A.

For sequential, The false alarm rate is constant over time: assuming that there is no change point,

at each time instant t, the probability to raise a false alarm, i.e. wrongly detect there is a change point, is

kept constant= alpha. This implies that the expected number of observations received until a false alarm is

raised is 1/𝜶. This quantity is referred to as the average run length or ARL0. Long ARL means there is a

low possibility of false alarm rate 𝜶, but it’s a less sensitive detection method. Short ARL means it’s a

more sensitive detection that has fast detection times, but there is a high possibility of false alarm rate 𝜶.

We use ARL=1/𝜶 = 1000, 900, 800 respectively. Results for the latter two are in the appendix.

Sequential Detection

Cramer-von-Mises

Mood



Mann-Whitney

Figure 3.  Bitcoin change points were identified by sequential detection using cpm R
Cramer-von-Mises, Mood, and Mann-Whitney methods from 2014 to the present. The green line is
the log-return calculated by the price of bitcoin in the US dollar from Yahoo from 2014-09-17 to
2021-06-29. The vertical blue lines indicate all the change points were identified using  ARL = 1000. For
figures of ARL = 900, 800, and all detailed change point time, please see Appendix table B.

In order to more intuitively see Changepoint's detection of mean and variance changes, we

calculate the log-return of bitcoin’s mean and variance of each interval between the two change points

detected by Mann-Whitney and Cramer-von-Mises Sequential methods with ARL0=1000.



Mean Variance

Mann-Whitney

Figure 3b. The Green lines are means and variances of the Bitcoin log-returns in between changepoints
detected by Mann-Whitney and Cramer-von-Mises Sequential CPD methods with ARL0=1000. The red
lines are prices, plotted for reference. Note that the means are positive when they are below the zero line.



Looking at the changepoints for Mann-Whitney ARL0=1000, and the means in between, it seems

that the mean log-returns are quite large in the short periods in 2015, 2017, and 2019, suggesting that they

are short periods of growth, followed by periods of slower growth or decay in the case of the first and last

periods, and the one from 2019 to 2020. The period from 2017 to 2019 seem to correspond with the 2017

boom and the lasting effects of the crash, and it seems the positive effects of the boom have averaged out

the negative ones from the crash to produce a small positive average return.

We also see that the changepoints for sequential Mood, ARL0=1000, seem to be a superset of the

changepoints for Batch mood, alpha=0.01.

Elisheva’s Method

Elisheva (private communication) proposed a method similar to that of Islambekov et al. [10]

discussed in Part Three, in which we focus our change point detection method on the time series

generated by finding the variance of discrete windows with the size of w sliding over the time series. She

argues that this method is more sensitive to changes in variance in a time series. Applying this method

with a window size of 5, we were able to find identical changepoints using Cramer-von-Mises and

Mann-Whitney using the Batch method (and none using Mood) for alpha = 0.01. For Sequential

(ARL0=50000), the results are almost identical for Cramer-von-Mises and Mann-Whitney. These results

suggest sudden increases in variance during the 2017-2018 crash, as well as periods of lower but still

large variance before and after the crashes. The first two periods and the period after the 2018 crash are

periods of greater stability.

(data below are calculated from log-returns directly, not from preprocessed)

mean -0.00321706757584759, variance 0.00189656428943762, from 2014-09-19

mean 0.00238447514393266, variance 0.000852651122272751, from 2015-04-01

mean 0.00510775880763427, variance 0.00308186995312668, from 2017-05-05



mean 0.000759686795768944, variance 0.0013513588779323, from 2018-04-30

mean 0.0035743370308594, variance 0.00198729521452346, from 2020-11-25

Batch Cramer-von-Mises/Mann-Whitney Sequential Cramer-von-Mises

Figure 4. Applying Elisheva’s Method to find change points of the log-returns time series
preprocessed by finding the variances of windows of size 5. The Sequential trials have the largest allowed
ARL0=50000, and the Batch one has alpha=0.01.

We observe that the changepoints detected using Batch Cramer-von-Mises/Mann-Whitney seems

to be almost a subset of the changepoints detected using Batch Mood, for alpha = 0.01. This might

suggest that changes in variance in the original series had transformed to changes in mean in the new

series of variances.

B. Multivariate Time Series of Cryptocurrencies

Since the launch of Bitcoin in 2009 as the first decentralized cryptocurrency, many other

cryptocurrencies have been created, some important ones such as Etherium, Litecoin, and Ripple, etc.



Analyzing the entire cryptocurrency market through the prices of multiple cryptocurrencies is helpful in

understanding the dynamics of cryptocurrencies.

We convert four time series, including Bitcoin, Etherium, Litecoin, and Ripple, into log-return

times series, then detect change points on this combined mixed log-return time series to represent the

cryptocurrency market price change points. The ​​ecp R package is able to perform multiple change-point

analyses for multivariate time series. The method is able to estimate multiple change-point locations,

without a priori knowledge of the number of change points. The procedures assume that observations are

independent with finite 𝛼th absolute moments, for some 𝛼∈ (0,2]. We use the e.divisive method in the

ecp R package which can compare permutations of the time series data before and after a point, finding

the point with the greatest difference between its left and right subseries. An iterative approach similar to

our recursion in batch detection is applied. Since the running time is quadratic, the method can become

pretty slow as the data increases in size. [5] We generate the multivariate time series by combining the

normalized log-return time series for Bitcoin, Etherium, Litecoin, and Ripple from 2015-08-07 to the

present, normalizing with a min-max scaling of the time series (i.e. (x - min(x))/(max(x)-min(x)))). We do

not normalize the prices directly since we need to take subsequent log returns, and normalization of prices

would make all logs be between [-inf, 0], including -inf, which is not desirable.
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Figure 5.  Bitcoin change points were identified by ecp R package e.divisive method using
multivariate time series and univariate time series from 2015 to the present and Log-Return of
Bitcoin. The first row shows the change point of bitcoin by detecting the multivariate time series
combined by Bitcoin (BTC), Etherium (ETH), Ripple (XRP), and Litecoin (LTC) normalized log-return
time series from 2015-08-07 to 2021-06-29, shown in that order. For the normalized prices plot of the four
currencies, Bitcoin is green, Etherium is black, Ripple is purple, and Litecoin is red. The second row in
the table shows the change point of bitcoin by detecting the univariate time series of bitcoin from
2014-09-17 to 2021-06-29. The green line is the log-return calculated by the price of bitcoin in the US
dollar from Yahoo from 2014-09-17 to 2021-06-29.

We observe that both have detected a changepoint around the time before the 2017 boom, similar

to the Mann-Whitney ARL0=1000 Sequential detection discussed above. Both also share one after the

crash, though E.divisive seem to have found ones closer to the crash in contrast with Mann-Whitney

whose one is found near the end of the downward price movement in 2019.

E.divisive multivariate found a changepoint late 2020 but did not find the 2019 changepoint

found by univariate. This is perhaps because Ethereum and Ripple do not have the sustained price found

in Bitcoin between 2019 and 2020, but only the spike in prices in 2020-201, as can be seen in the Figure

5.

We use the data from 2015-08-07 to 2021-06-29 to detect the mixed time series, since Etherium is

available only after 2015-08-07. As a point of comparison, we also run e.divisive on Bitcoin from

2014-09-17. We find out that the detection of the longer univariate time series takes longer than shorter

multivariate time series using the e.divisive method, for instance, univariate with only bitcoin (with earlier

start date) takes about 24.8 minutes, while multivariate only takes 18.9 minutes. Since multivariate cannot

reasonably be plotted, we only plot the price of bitcoin with the changepoints.

Part Two: Socioeconomic behind Bitcoin Change-point

Socioeconomic events can be the main drives behind Bitcoin dynamics, such as new regulations,

robberies from exchanges, and even rumors spreading on Twitter. Any event may cause cryptocurrency

market turmoil, or even lead to a financial crash. Having analyzed the main bitcoin change point, it is



useful to put them into context and expose their key drivers, as well as the developments and events that

promoted their nucleation or caused their sudden crashes.

Since there were too many sets of data, we first chose the data we detected from the

Cramer-Vince-Mises method to analyze. Because it analyzes general changes in the distribution, without

the knowledge of the distribution, it is a more general representation. For batch detection, we first look at

the data when alpha=0.01, which has the highest confidence level out of all the alpha. We detected a total

of three change-points, 2016-02-07, 2016-12-21, and 2018-03-04. The mean and variance of each interval

between change points are as follows:

mean -0.000383505963917142, variance 0.00132558366449342, from 2014-09-19

mean 0.00228353427160357, variance 0.000505762125677388, from 2016-02-07

mean 0.00609053255317596, variance 0.00267865648252861, from 2016-12-21

mean 0.00102443609632902, variance 0.00153022878192985, from 2018-03-04

In November 2016, the Swiss Railway operator SBB (CFF) upgraded all their automated ticket

machines so that bitcoin could be bought from them using the scanner on the ticket machine to scan the

bitcoin address on a phone app. On 26 January 2018, Coincheck, Japan's largest cryptocurrency OTC

market, was hacked. 530 million US dollars of the NEM were stolen by the hacker, and the loss was the

largest ever by an incident of theft, which caused Coincheck to indefinitely suspend trading. On 7 March

2018: Compromised Binance API keys were used to execute irregular trades. After that, during Late

March 2018, Facebook, Google, and Twitter banned advertisements for initial coin offerings (ICO) and

token sales. Those all led to the 2018 cryptocurrency crash (also known as the Bitcoin crash and the Great

crypto crash) was the sell-off of most cryptocurrencies from January 2018.[6][7]

For Sequential detection, when we use ARL=40000,  which is when the confidence value is the

highest and the false alarm is the lowest. We detect a total of 3 change points: 2017-04-24, 2018-04-29,

and 2019-06-12, dividing the series into four periods. Between 2017-04-24 and 2018-04-29, the average



and variance log-returns were the largest, around 0.0055 and 0.0030, respectively, suggesting more

market volatility. This roughly correlates with the cryptocurrency 2017-boom and 2018-crash described in

[7]. The fourth and last period also corresponds with a boom and crash, and has variance and mean

log-returns higher than the two calmer periods (the first and third).

The ensuing period from 2018-04-29 to 2019-06-12 is the only period with negative average

log-returns of -0.0004, and has variance very close to the first period from 2014-09-17 to 2017-04-24,

below 0.0011. The negative returns may be related to the setbacks due to advertisement bans, hacks, and

crackdowns [8] earlier in the year, and these events might have also resulted in the large variance of the

previous period. Effects of the crash continued to the end of 2018, though the period is relatively more

calm. If we take the interpretation from the Fear-and-Greed Index described below, the 2019 changepoint

may be explained by the data suggesting that the investors are finally at a point where they are worried

enough that they could hardly be more worried, so that the price could rise.

Figure 6. The changepoints detected using Sequential Cramer-von-Mises for ARL=40000.

The mean and variance of each interval between change points are as follows:

2014-09-18 to 2017-04-24 Calm period:

mean: 0.00102281680569398, variance 0.00107358674118345

2017-04-24 to 2018-04-29: Dangerous/bull period:

mean: 0.00553216738823242, variance 0.00301944343273643



2018-04-29 to 2019-06-12 Calm/bear:

mean: -0.000403053904460364, variance 0.00108104997453162

2019-06-12 to present: higher risk, slightly higher returns:

mean: 0.00197873658732267, variance 0.00171304592845981

We note that a more continuous analysis of market sentiments might reveal other interpretations

of the changepoints and the periods between them, instead of a rough look at significant events. For

example, comparing the Fear and Greed Index hosted by the website Alternative.me

(https://alternative.me/crypto/fear-and-greed-index/) and the Sequential Cramer-von-Mises (ARL=1000)

changepoints after 2018 we found above seems to suggest the changepoints are near the extrema/turning

points of the Greed/Fear values, especially the 2018-04-29 and 2019-06-12.

The low values represent “Fear”, and high values “Greed”, according to the website. “Fear”

corresponds with sudden rise in volatility, rise of Bitcoin share of the crypto market, or increase in

worried searches in Google Trends, and “Greed” corresponds with “high buying volumes in a positive

market”, high interactivity with a coin and its hashtag in Twitter, or increasing market share for an

alt-coin. The authors argue that “Fear” could be a buying opportunity, and “Greed” signals that the market

is due for correction.

A more exact version (no data before Feb 2018, so I made them 0) is below, for ARL = 1000 and

40000 respectively.

Sequential Cramer-von-Mises, ARL=1000 Sequential Cramer-von-Mises ARL=40000

https://alternative.me/crypto/fear-and-greed-index/


Figure 7. The changepoints we found from investigating the log-returns of the closing prices of Bitcoin in

the context of the Fear and Greed Index.

Part Three: Topological Data Analysis and CPD

Islambekov et al. [10] introduced the idea of using Topological Data Analysis (TDA) as a tool to

enhance changepoint detection. The basic idea is to first apply TDA to get a sequence of betti numbers,

which measures the “n-dimensional holes” of the topology of the data, and then estimate the changepoints

of the new resulting time series.

If the given data is univariate, then we might want to embed the data in higher dimensional spaces

(here we are doing 3 dimensional space) by moving a window of the size of the embedding dimension

across the time series to generate the points in the higher dimensional space. Then we move a window of

size n across the resulting time series to get sets of points each with cardinality n (since indexing in R is

inclusive, the window size in the code should be n-1).



We impose a simplicial complex on each set using a specific epsilon value, such that the mutual

distance between every point in a simplex is less than epsilon. This is called a Rips complex, and we use

the Rips diagram, which actually calculates a sequence of such complexes, called a Rips filtration, in the

TDA R-library for such calculations. Naturally, for different epsilons, the betti numbers for simplicial

complexes would differ based on the value of the epsilon. As Islambekov et al. observed, for small

window sizes, topological features of dimension greater than 0 are not frequently observed, so we limit

ourselves to 0th dimensional betti numbers. We compute the 0-th dimensional betti numbers for a range of

epsilons using a function the CosmoBetti package

(https://rdrr.io/github/gonzalezgouveia/CosmoBetti/man/compute_betti_number.html), and produce a

multivariate time series, each time has a vector of 0 betti numbers for standard intervals of epsilons up to

epsilon = 0.5.

Finally, we apply the e.divisive method to the time series to calculate the 5 most significant

changepoints. This bound is arbitrary since the calculation might produce a great number of changepoints,

which costs a lot of time and is not feasible for analysis.

Below are the results for embedding dimension = 3 and 1, and window size = 5 and 11, with 50

epsilons (starting from 0.01) or 5 epsilons (starting 0.1), producing a total of 8 graphs.

https://rdrr.io/github/gonzalezgouveia/CosmoBetti/man/compute_betti_number.html




Figure 8. The black graphs are the 0th dimensional betti numbers calculated using epsilon = 0.01
if there are 50 epsilons, and epsilon = 0.1 if there are 5 epsilons, and the corresponding window size. The
changepoints shown are the 5 most relevant ones. It seems with larger window size, the betti numbers are
smaller.

We observe that with larger initial epsilon, 0.1, the changepoints agree less, whereas with smallest

epsilon = 0.01, the changepoints agree more with each other, with a difference of only a few days, with

the exception only being the one with no embedding and window size 11, where the disagreement is over



the location of the first changepoint and if there should be a changepoint in 2019. This changepoint is

more in line with smallest epsilon =0.1, and with embedding.

We tried applying PCA to the 50 epsilons, 3-embedding, window = 5 case to reduce the data to a

univariate time series, and then apply univariate analysis using Cramer-von-Mises with alpha=0.001. Due

to the threshold of the test statistics is still too low and too many changepoints are produced, we limit the

Batch recursion to 2 levels (0th level with 1 changepoint, 1st level with at most 2 changepoints, and 2nd

level with at most 4 changepoints, so there are at most 7 changepoints).

Figure 9. Results of applying Batch recursively after applying PCA to reduce the 2522x50
dimensional time series to a 2522x1 dimensional time series (plotted). For information about the
thresholds, reduced time series, and Mood and Mann-Whitney trials, see Appendix Table D. The
recursive sequential analysis with ARL=40000 gives even more changepoints, and I cannot reasonably
limit the number of iterations.

`Non-overlapping Windows



Elisheva (private communication) pointed out that the problem with sliding a window over the

data such that a data point can be included in multiple windows, which is what is done in Islambekov et

al. [10] is that the resulting time-series would be weakly dependent, while our changepoint detection

methods assume that the data are independent and identically distributed between the changepoints.

However, in Islambekov et al. [10]’s method we may need to take windows twice, once for

embedding to 3D with overlapping sliding windows. This may be problematic as the resulting time series

may still be dependent. Hence we may prefer to work without embedding, and use non-overlapping

windows for the persistence diagrams and betti-0 numbers. We add the results for 3D embedding with

overlapping windows for comparison.





Figure 10. Applying TDA with non-overlapping windows , though for the embeddings, the embedding

windows still overlap. The changepoints are calculated after multiplying by the window size.

We also applied PCA to the no-embedding version (since embedding might be guilty of being

weakly dependent), with 50 epsilons and a window size of 5 (non-overlapping). The number of

changepoints produced is now much more manageable, so there is no need to limit the amount of

iterations for Batch.

Batch (alpha=0.01) Sequential (ARL=40000)



Figure 11: Cramer-von-Mises applied to the time series after PCA reduction from the 50 dimensional
time series of betti-0 number on windows of 5 from the univariate time series of Bitcoin log returns from
2014-09-17 to present.

TDA test with Gaussian Series

To compare with Elisheva results, we also try to apply the TDA method to a Gaussian time series

of length 200, with a jump of variance from 1 to 2 at 100. We run it for 1000 trials by using seeds from 1

to 1000 for each time series.

On the base case, applying Cramer-von-Mises Bath detection with alpha = 0.05 to the original

Gaussian series produces a detection rate of 0.086, and a Mean Average Error (calculated by adding 100

to the total error for each trial without a changepoint detected, and the absolute distance between the

changepoint detected, when detected, and 100) of 95.516. E.divisive (limiting the number of changepoints

to 1) applied to the series does produce a detection rate of 1, and a MAE of 28.348. Since detection rate

cannot be improved for e.divisive, we did not use it to test the TDA+PCA method.

E.divisive did not produce optimal results when TDA is applied without PCA (without embedding), for

both epsilons {0.01,0.02,...,0.5} and {0.1, 0.2, …,0.5}, and window size from 5 to 10-- in fact, no



changepoint is detected at all, besides the two points that mark the beginning and end of the sequence

which it usually detects. Islambekov et al. [10] were able to produce slightly improved MAE by using

e.divisive in PCA+TDA.

Epsilons {0.01,0.02,...,0.5} Epsilons {0.1, 0.2, …,0.5}

Detection rate

MAE

Figure 12. The graphs above shows the data for applying Cramer-von-Mises Batch detection to the time
series after Principal Component Analysis reduced the multidimensional series of betti-0 numbers to a
one dimensional series. The window sizes are offset by 1 (so when it’s 4, it is actually 5) for indexing
reasons.



Window = 5 Window = 10

Detection rate

MAE

Figure 13. The detection rates and MAE for increasing variances of the second part of the time series,
from 2 to 9, for windows =5 and 10. The variance of the first half is 1. The green lines are the data for the
original series of the corresponding variances, for comparison.

-------
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Appendix

threshold

Appendix table B

ARL 900 800

Cramer-von-Mises

Mood

Mann-Whitney

Appendix Table C



Cramer Mood Mann-Whitney

Appendix Table D

alpha Cramer Mood

0.05



0.1


