method of False Position (Regula Falsi)
It converges faster than the Bisection method Instead of funding the midpoint as in the Bisection method, the Regula-Falsi method finds $x^{\prime}$ by taking the straight line joining the points $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$ and selecting the point that intersects the $x$-axis.


To find $x^{\prime}$, we find the slope of the line joining $\left(x_{1}, f\left(x_{2}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$ and $d$ w the slope joining $\left(x^{\prime}, 0\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$, which is the same slope.

Lit us call $m=$ slope

$$
\begin{aligned}
& m=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \text { and } m=\frac{f\left(x_{2}\right)-0}{x_{2}-x^{\prime}} \\
& \left(f\left(x_{2}\right)-f\left(x_{1}\right)\right) x_{2}-\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right) x^{\prime}=f\left(x_{2}\right)\left(x_{2}-x_{1}\right) \\
& x^{\prime}=x_{2}-\frac{f\left(x_{2}\right)\left(x_{2}-x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)}
\end{aligned}
$$

Apart from this, the method is equivalent to the bisection method.

