Binary Search (or Bisection method)

to sole nonlinear equations for a
single variable x
We rearrange the nonlinear equation in the form

$$
f(x)=0
$$

Finding the solution is thus equivalent to find the zeros, or roots, of $f(x)$
$\overline{S T E P S}$
(1) we need to specify the interval in which we want to search for the solution.

We mud to choose x_{1} and x_{2} so that

$$
f\left(x_{1}\right) \cdot f\left(x_{2}\right)<0,
$$

that is, either $f\left(x_{1}\right)$ or $f\left(x_{2}\right)$ is positive and the other is negative. This guarantee at least
(one)root between x_{2} and x_{2}.

[Note: those could also be mon than 1 root, but let us assume for
the moment that thru is only 1.]
(2) We now take the midpoint between x_{1} and x_{2}

$$
x^{\prime}=\frac{x_{1}+x_{2}}{2}
$$

If $f\left(x^{\prime}\right)=0$, this is the root.
(3).) If $f\left(x^{\prime}\right)$ bras the same sign as $f\left(x_{1}\right)$ then x^{\prime} and x_{2} bracket the solution and will
be used for step (3) with $x_{1}=x^{\prime}$

$$
x_{2}=x_{2}
$$

-If $f\left(x^{\prime}\right)$ has the same sign an $f\left(x_{2}\right)$ then

$$
x_{1}=x_{1}
$$

$$
x_{2}=x^{\prime}
$$

(4) If $\left|x_{1}-x_{2}\right|>$ target accuracy, repeat from (2) Otherwise, calculate $\left(\frac{x_{1}+x_{2}}{2}\right)$ once more and this is the final estimate for the root

Problems with the method
\rightarrow If there are an even number of roots between x_{1} and x_{2}, we may think there is no root.

\rightarrow It cannot find even-order polynomial roots. They just touch the horizontal axis.
so we cannot find $f\left(x_{1}\right) \cdot f\left(x_{2}\right)<0$

Examples

$$
(1-x)^{2}=0
$$

$$
(2-3 x)^{4}=0
$$

atc

