For a symmetric matrix A, an eigenvector \mathbf{v} is a vector that satisfies

$$A \mathbf{v} = \lambda \mathbf{v}$$

the corresponding eigenvalue λ.

For an $N \times N$ matrix there are N eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \ldots \mathbf{v}_N$ with corresponding eigenvalues $\lambda_1, \lambda_2, \lambda_3, \ldots \lambda_N$.

The eigenvectors are orthogonal:

$$\mathbf{v}_i \cdot \mathbf{v}_j = 0 \quad \text{if} \quad i \neq j$$

and they are normalized

$$\mathbf{v}_i \cdot \mathbf{v}_i = 1 \quad \text{(this is just convention)}$$

If we consider the matrix V, where each column is an eigenvector \mathbf{v}_i, we can write all N equations

$$A \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

into a single equation

$$A \mathbf{V} = \mathbf{V} \mathbf{D}$$
where D is a diagonal matrix with the eigenvalues λ_i.

Because the eigenvectors are orthogonal, the matrix V is **orthogonal**

$$V^T V = V V^T = I$$

QR ALGORITHM is a popular technique to diagonalize real symmetric and Hermitian matrices.

The algorithm uses the **QR decomposition** of the matrix. We will detail about the decomposition next. For now we just need to know that this is a way to break the matrix A into the product

$$Q \cdot R$$

where Q is an **orthogonal** matrix and R is an **upper-triangular** matrix.
Let us start by writing

\[A = Q_1 R_1 \]

\[\Rightarrow \text{ multiply by } Q_1^T \]

\[
Q_1^T A = Q_1^T Q_1 R_1 = R_1
\]

\[\Rightarrow \text{ Define a new matrix } \]

\[A_1 = R_1 Q_1 \]

from above \[R_1 = Q_1^T A \]

\[A_1 = Q_1^T A Q_1 \]

\[\Rightarrow \text{ Repeat the process } \]

\[A_2 = Q_2 R_2 \]

\[Q_2^T A_2 = R_2 \]

\[\text{ new matrix } \]

\[A_2 = R_2 Q_2 \]

\[A_2 = Q_2^T A_2 Q_2 \]

so

\[A_2 = Q_2^T Q_1^T A Q_1 Q_2 \]
Repeating the process many times

\[A_1 = Q_1^T A D_1 \]
\[A_2 = Q_2^T Q_1^T A D_1 D_2 \]
\[A_3 = Q_3^T Q_2^T Q_1^T A D_1 D_2 D_3 \]
\[\vdots \]
\[A_k = (Q_k^T \ldots Q_1^T) A (Q_1 \ldots Q_k) \]

It can be proven that if we continue this process long enough, the matrix \(A_k \) will eventually become diagonal. The off-diagonal elements become smaller and smaller the more iterations we do.

In practice, \(A_k \) is approximately a diagonal matrix \(D \)

Let us define

\[V = Q_1, Q_2, Q_3, \ldots, Q_k \]

From above

\[V^T A V = D \]
Multiplying by \(V \)

\[
AV = VD
\]

which is exactly the original equation we had to solve.

Therefore

1. The diagonal elements of

 \[
 A_k = \begin{pmatrix} a_{k1} & \cdots & a_{k1} \\ \vdots & \ddots & \vdots \\ a_{kk} & \cdots & a_{kk} \end{pmatrix}
 \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_k \end{pmatrix}
 \]

 are the eigenvalues

2. Each column of

 \[
 V = \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_k \end{pmatrix}
 \]

 is an eigenvector

RECIPE

1. Crack an \(N \times N \) identity matrix \(V \).

 Choose the target accuracy \(\epsilon \) for the off-diagonal elements of the eigenvalue matrix.
2) Calculate the QR decomposition
 \(A = QR \) (see below how to do it)

3) Update \(A \) to the new value
 \[A = RQ \]

4) Multiply \(V \) on the right by \(Q \)
 \[V = VQ \]

5) Check the off-diagonal elements of the new \(A \). If they are less than \(\varepsilon \), we are done. Otherwise go back to step 2.

QR decomposition

Let us think of \(A \) as a set of \(N \) column vectors \(a_0, a_1, \ldots, a_{N-1} \)

\[\text{using Python numbering} \]
Let us define two sets of vectors:

\[m_0, m_1, \ldots, m_{n-1} \quad \text{and} \quad g_0, g_1, \ldots, g_{n-1} \]

\[
\begin{align*}
\mathbf{m}_0 &= \mathbf{a}_0 \\
\mathbf{m}_1 &= \mathbf{a}_1 - (\mathbf{g}_0 \cdot \mathbf{a}_1) \mathbf{g}_0 \\
\mathbf{m}_2 &= \mathbf{a}_2 - (\mathbf{g}_0 \cdot \mathbf{a}_2) \mathbf{g}_0 - (\mathbf{g}_1 \cdot \mathbf{a}_2) \mathbf{g}_1 \\
&\vdots
\end{align*}
\]

General formulas:

\[
\mathbf{m}_i = \mathbf{a}_i - \sum_{j=0}^{i-1} (\mathbf{q}_j \cdot \mathbf{a}_i) \mathbf{q}_j
\]

\[
\mathbf{q}_i = \frac{\mathbf{m}_i}{|\mathbf{m}_i|}
\]

It can be shown that the vectors \(q_i \) are \underline{ORTHONORMAL}:

\[
\sum_{i=0}^{n-1} q_i q_j = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases}
\]
\[q_i \cdot q_j = \begin{cases}
1 & \text{if } i \neq j \\
0 & \text{if } i = j
\end{cases} \]

\[\Rightarrow \text{Rearranging the definitions} \]

\[
\begin{align*}
 a_0 &= 1 \omega_0 \, q_0 \\
 a_1 &= \omega_1 \, q_1 + (q_0 \cdot a_1) \, q_0 \\
 a_2 &= \omega_2 \, q_2 + (q_0 \cdot a_2) q_0 + (q_1, a_2) q_1 \\
 &\ldots
\end{align*}
\]

\[\Rightarrow \text{This can be written in a matrix form} \]

\[A = \begin{pmatrix}
1 & 1 & 1 \\
a_0 & a_1 & a_2 \\
1 & 1 & 1
\end{pmatrix} = \begin{pmatrix}
q_0 & q_1 & q_2 \\
1 & 1 & 1
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
q_0, a_1 & q_0, a_2 \\
0 & 1 & 0 \\
0 & 0 & 1 \omega_1
\end{pmatrix} \]

\[Q \text{ orthogonal matrix} \]
\[R \text{ upper triangular matrix} \]

This is the Q R decomposition.

(1) Starting with a certain matrix \(A \), we use the \(q \)'s and \(g \)'s.
about to write \(A_{\text{old}} = QR \)

2. Update \(A_{\text{new}} = RQ \)

i) If the process is repeated, use \(A_{\text{new}} \) above and its corresponding new \(u \)'s and \(g \)'s to get new \(Q \) and \(R \) and restart the steps 1 and 2