Chapter 10 – Fluids

Up to now we only considered rigid objects, now we look at deformable materials.

The three common **phases of matter** are solid, liquid, and gas.

A **solid** has a definite shape and size (not easily compressed).

A **liquid** has a fixed volume but can be any shape (not easily compressed).

A **gas** can be any shape and expands to fill its container. It can be easily compressed.

Liquids and gases both flow, and are called **fluids**.

The division of matter into three phases is not always simple. What is butter?

Fourth phase – **plasma** – at very high temperatures, ionized atoms
Iron is not necessarily “heavier” than wood, but it is more dense. The density ρ of an object is its mass per unit volume:

$$ \rho = \frac{m}{V} $$

The SI unit for density is kg/m3. Density is also sometimes given in g/cm3; to convert g/cm3 to kg/m3, multiply by 1000.

Ex. 10-1 What is the mass of a solid iron ball of radius 18 cm?

$$ V = \frac{4}{3}\pi r^3 $$

$$ \rho = 7.8 \times 10^3 \text{ kg/m}^3 $$

$$ m = 190 \text{ kg} $$

Specific Gravity: is the ratio of the density of a substance to the density of water at 4 Degrees Celsius

Water at 4°C has a density of 1 g/cm$^3 = 1000$ kg/m3.
Temperature and pressure affect the density of substance.

- Compare **iron and wood**
- Notice how dense **mercury** is
- Note the low density of **gases**
- **Specific density** - dimensionless

<table>
<thead>
<tr>
<th>Substance</th>
<th>Density, ρ (kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>2.70×10^3</td>
</tr>
<tr>
<td>Iron and steel</td>
<td>7.8×10^3</td>
</tr>
<tr>
<td>Copper</td>
<td>8.9×10^3</td>
</tr>
<tr>
<td>Lead</td>
<td>11.3×10^3</td>
</tr>
<tr>
<td>Gold</td>
<td>19.3×10^3</td>
</tr>
<tr>
<td>Concrete</td>
<td>2.3×10^3</td>
</tr>
<tr>
<td>Granite</td>
<td>2.7×10^3</td>
</tr>
<tr>
<td>Wood (typical)</td>
<td>$0.3 – 0.9 \times 10^3$</td>
</tr>
<tr>
<td>Glass, common</td>
<td>$2.4 – 2.8 \times 10^3$</td>
</tr>
<tr>
<td>Ice (H$_2$O)</td>
<td>0.917×10^3</td>
</tr>
<tr>
<td>Bone</td>
<td>$1.7 – 2.0 \times 10^3$</td>
</tr>
<tr>
<td>Liquids</td>
<td></td>
</tr>
<tr>
<td>Water (4°C)</td>
<td>1.00×10^3</td>
</tr>
<tr>
<td>Blood, plasma</td>
<td>1.03×10^3</td>
</tr>
<tr>
<td>Blood, whole</td>
<td>1.05×10^3</td>
</tr>
<tr>
<td>Sea water</td>
<td>1.025×10^3</td>
</tr>
<tr>
<td>Mercury</td>
<td>13.6×10^3</td>
</tr>
<tr>
<td>Alcohol, ethyl</td>
<td>0.79×10^3</td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.68×10^3</td>
</tr>
<tr>
<td>Gases</td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>1.29</td>
</tr>
<tr>
<td>Helium</td>
<td>0.179</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>1.98</td>
</tr>
<tr>
<td>Water (steam) (100°C)</td>
<td>0.598</td>
</tr>
</tbody>
</table>

$\rho = \frac{m}{V}$

1 Densities are given at 0°C and 1 atm pressure unless otherwise specified.
Pressure in Fluids

Pressure is defined as the force per unit area.

\[
P = \frac{F}{A}
\]

Force is a vector \ **BUT** \ Pressure is a SCALAR; the unit of pressure in the SI system is pascal (Pa):
\[1 \text{ Pa} = 1 \text{ N/m}^2\]

Ex. 10-2 The two feet of a 60-kg person cover an area of 500 cm\(^2\).
(a) Determine the pressure exerted by the two feet on the ground.
(b) If the person stands on one foot, what is the pressure?

\[(a) P = 12 \times 10^3 \text{ N/m}^2 \hspace{1cm} (b) P = 24 \times 10^3 \text{ N/m}^2\]

Fluids exert pressure in all directions

1. Pressure is the **same in every direction** in a fluid at a given depth; if it were not, the fluid would flow.

2. Force from fluid pressure acting on any object immersed in the fluid is applied **perpendicular** to the object’s surface. If there were parallel component on surface, the surface would react and apply a force on the fluid, which would flow.
Pressure in Fluids

The pressure at a depth \(h \) below the surface of the liquid is due to the weight of the liquid above it.

\[
F = mg = \rho Vg = \rho Ahg \Rightarrow P = \frac{F}{A} = \frac{\rho Ahg}{A} = \rho gh \Rightarrow \Delta P = \rho g \Delta h
\]

The relation does not depend on the area.
This relation is valid for any liquid whose density is constant and does not change with depth = incompressible fluid.

The pressure at equal depths within a uniform liquid is the same.

Ex. 10-3 The surface of the water in a storage tank is 30 m above the water faucet in the kitchen of a house. Calculate the difference in water pressure between the faucet and the surface of the water in the tank.

\[
\Delta P = 2.9 \times 10^5 N / m^2
\]

To solve the exercise above we assumed that water is incompressible, but we know that at great depths in the ocean \(r \) increases by compression.
Atmospheric Pressure

Pressure of the Earth’s atmosphere changes with depth, and it varies with altitude and weather.

At sea level, the atmospheric pressure is about

\[1.013 \times 10^5 \text{ N/m}^2 \]

this is called one atmosphere (atm).

This pressure does not crush us, because just like balloons, our cells maintain an internal pressure that balances it.

Ex. 10-4 Finger holds water in a straw

Air pressure inside the top of the straw has to be smaller than the atmospheric pressure outside the straw.

\[mg = \rho g Ah \]
Pascal’s Principle: If an external pressure is applied to a confined fluid, the pressure at every point within the fluid increases by that amount.

This principle is used, for example, in hydraulic lifts.

Input and output pistons at the same height:

\[
\begin{align*}
P_{\text{out}} &= P_{\text{in}} \\
\frac{F_{\text{out}}}{A_{\text{out}}} &= \frac{F_{\text{in}}}{A_{\text{in}}} \implies F_{\text{out}} &= F_{\text{in}} \frac{A_{\text{out}}}{A_{\text{in}}}
\end{align*}
\]
Measurement of Pressure

Most pressure gauges measure the pressure above the atmospheric pressure – this is called the gauge pressure. The absolute pressure is the sum of the atmospheric pressure and the gauge pressure.

\[P = P_A + P_G \]

Manometer. The pressure in the open end is atmospheric pressure; the pressure being measured causes the fluid to rise, if \(P > P_0 \) or fall, if \(P < P_0 \)

\[P = P_0 + \rho g \Delta h \]
Barometer

This is a mercury barometer, developed by Torricelli to measure atmospheric pressure. The height of the column of mercury is such that the pressure in the tube at the surface level is 1 atm.

Height=76cm

\[P = \rho g \Delta h = (13.6 \times 10^3)(9.8)(0.760) = \]
\[= 1.013 \times 10^5 \text{ N/m}^2 = 1 \text{ atm} \]

Any liquid can serve in a Torricelli-style barometer, but the most dense ones are the most convenient.

For example, a column of water would be 10.3 m high.
Examples of **buoyancy**:
- Objects submerged in a fluid appear to weigh less than outside
- Some objects float

Besides the force of gravity acting downwards, there is the **buoyant force** exerted by the liquid upward.

The buoyant force occurs because the pressure in a fluid increases with depth.

\[
F_B = F_2 - F_1 = \rho_F g A (h_2 - h_1) \\
= \rho_F g A \Delta h \\
= \rho_F V g \\
= m_F g ,
\]

Buoyant force on the object is equal to the weight of fluid displaced by the object

\(\rho_F \) is the density of the fluid NOT the object. The pressure/force is exerted by the fluid.
Archimedes’ Principle:

Buoyant force on the object is equal to the weight of fluid displaced by the object.

\[F_B = m_F g \]

The volume of liquid displaced = the volume of the submerged object.

Ex. 10-6 Consider two identical buckets of water filled to the brim. One bucket contains only water, the other has a piece of wood floating in it. Which bucket has the greater weight (if any)?

Both buckets weigh the same. The piece of wood displaces a volume of water with weight equal to the weight of the wood.

Ex. 10-7 A 70-kg statue lies at the bottom of the sea. Its volume is 3.0x10^4 cm^3. How much force is needed to lift it?

(for seawater: \(r = 1.025 \times 10^3 \) kg/m^3)

\[F \text{ needed is } 390 \text{ N} \]
EUREKA

Eureka (Greek "I have found it") is an exclamation used as an interjection to celebrate a discovery. It is most famously attributed to Archimedes; he reportedly uttered the word when, while bathing, he suddenly understood that **the volume of an irregular object could be calculated by finding the volume of water displaced when the object was submerged in water.** After making this discovery, he is said to have leapt out of his bathtub and run through the streets of Syracuse naked.

Archimedes' insight led to the solution of a problem that had been asked of him by Hiero of Syracuse, on how to assess the purity of an irregular golden crown: by dividing the object's weight by its volume, one could calculate its density, an important indicator of purity.
Ex. 10-8 When a crown of mass 14.7 kg is submerged in water, an accurate scale reads only 13.4 kg. Is the crown of gold?

\[w' = w - F_B \Rightarrow w - w' = F_B = \rho_F V g \]
\[w = mg = \rho_o V g \]
\[\frac{w}{w - w'} = \frac{\rho_o V g}{\rho_f V_f g} = \frac{\rho_o}{\rho_f} \]

\[\rho_o = 11.3 \times 10^3 \text{ kg} / \text{m}^3 (\text{lead}) \]
Archimedes’ s Principle (float)

An object floats on a fluid if its density is less than that of the fluid.

If the object’s density is less than that of water, there will be an upward net force on it, and it will rise until it is partially out of the water.

\[
F_B = (2000 \text{ kg})g
\]

\[
m_O = 1200 \text{ kg}
\]

\[
V = 2.0 \text{ m}^3
\]

\[
mg = (1200 \text{ kg})g
\]

\[
F_B = (1200 \text{ kg})g
\]

\[
m = (1200 \text{ kg})g
\]

\[
F_B = m_F g = \rho_F V g = (2.0 \times 10^3) g
\]

\[
\rho_F = 1.00 \times 10^3 \text{ kg} / \text{ m}^3
\]

For equilibrium:

\[
F_B = m_O g
\]

\[
\rho_F V_{\text{displ}} g = \rho_O V_O g \Rightarrow V_{\text{displ}} = V_O \frac{\rho_O}{\rho_F}
\]
Exercises

Ex. 10-9 Suppose a 25.0-cm tube of mass 45.0 g and cross-sectional area 2.00 cm2 in water. In equilibrium, how deep will it be submerged?

\[V_{\text{displ}} = V_0 \frac{\rho_O}{\rho_F} \]

\[Ax = A(25.0) \frac{\rho_O}{\rho_F} \Rightarrow x = 22.5\text{cm} \]

Air is a fluid and it too exerts a buoyant force

Ex. 10-10 What volume V of helium is needed if a balloon is to lift a load of 180 kg (including the weight of the balloon)?

\[F_B = (m_{He} + 180\text{kg})g \]

\[\rho_{\text{air}}Vg = (\rho_{He}V + 180\text{kg})g \Rightarrow V = 160m^3 \]
If the flow of a fluid is smooth, it is called **streamline** or **laminar** flow (a). Above a certain speed, the flow becomes **turbulent** (b). Turbulent flow has small whirlpool-like circle - eddies; the **viscosity** of the fluid is much greater when eddies are present.
We will deal with laminar flow.

The **mass flow rate** is the mass that passes a given point per unit time. The flow rates at any two points must be equal, as long as no fluid is being added or taken away.

Equation of continuity:

\[
\rho_1 A_1 v_1 = \rho_2 A_2 v_2 \Rightarrow A_1 v_1 = A_2 v_2
\]

Where the pipe is **wider** the flow is **slower**

A river flows slowly through a meadow where it is broader, but speeds up to torrential speed when passing through a narrow gorge.
Ex. 10-11 In humans, blood flows from the heart to the aorta, then to arteries and to tiny capillaries. It returns to the heart via the veins. The radius of the aorta is about 1.2 cm and the blood through it has a speed of 40 cm/s. A typical capillary has a radius of about 4×10^{-4} cm and blood flows through it at 5×10^{-4} m/s. Estimate the number of capillaries in the body.

$$A_2 v_2 = A_1 v_1 \Rightarrow v_2 N \pi r_{cap}^2 = v_1 \pi r_{aorta}^2 \Rightarrow N \approx 7 \times 10^9$$

Ex. 10-12 What area must a heating duct have if air moving 3.0 m/s along it can replenish the air every 15 minutes in a room of volume 300 m3?

$$A_1 v_1 = A_2 v_2 = A_2 l_2 / t = V_2 / t$$

$$A_1 = \frac{V_2}{v_1 t} = 0.11 m^2$$
Bernoulli’s Equation

Where the velocity of a fluid is high, the pressure is low.

Velocity of a fluid is low, the pressure is high

\[W = W_1 + W_2 + W_g = F_1 \Delta l_1 - F_2 \Delta l_2 - mg(y_2 - y_1) \]

\[W = P_1 A_1 \Delta l_1 - P_2 A_2 \Delta l_2 - mgy_2 + mgy_1 \]

\[\frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 = P_1 A_1 \Delta l_1 - P_2 A_2 \Delta l_2 - mgy_2 + mgy_1 \]

Since \(m = \rho A_1 \Delta l_1 = \rho A_2 \Delta l_2 \)

\[\frac{1}{2} \rho v_2^2 - \frac{1}{2} \rho v_1^2 = P_1 - P_2 - \rho gy_2 + \rho gy_1 \]

Bernoulli’s equation:

\[P_1 + \frac{1}{2} \rho v_1^2 + \rho gy_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho gy_2 \]
Ex. 10-13 Water circulates throughout a house in a hot-water heating system. If the water is pumped at a speed of 0.50 m/s through a 4.0-cm diameter pipe in the basement under a pressure of 3.0 atm, what will be the flow speed and pressure in a 2.6-cm-diameter pipe on the second floor 5.0 m above?

\[A_1 v_1 = A_2 v_2 \]

\[A_1 v_1 = A_2 v_2 \Rightarrow v_2 = v_1 \frac{\pi r_1^2}{\pi r_2^2} = 1.2 \text{ m/s} \]

\[P_2 = P_1 + \frac{1}{2} \rho (v_1^2 - v_2^2) + \rho g (y_1 - y_2) = 2.5 \text{ atm} \]

Torricelli’s theorem.

\[P_1 = P_2 \Rightarrow v_1 = \sqrt{2g(y_2 - y_1)} \]

Liquid leaves the spigot with the same speed that a freely falling object would attain if falling from the same height.

\[\text{Copyright © 2005 Pearson Prentice Hall, Inc.} \]
Lift on an airplane wing is due to the different air speeds and pressures on the two surfaces of the wing.
The surface of a liquid at rest is not perfectly flat; it curves either up or down at the walls of the container. This is the result of surface tension, which makes the surface behave somewhat elastically.