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Abstract

Roll (1984) and Thompson and Waller (1987) provide techniques for estimation of bid-
ask spreads from mid-market closing prices. Restricting to this limited information, I
introduce the Absolute Roll Measure derived using imaginary numbers to address the
confounding presence of positive autocovariance in Roll (1984). I conduct an empirical
implementation for Aaa and Baa corporate bond spreads over the period 1986-2020
with four bid-ask models. The Absolute Roll Measure resolves an issue in the literature
and provides a measure applicable to all traded securities that are limited to closing
price information.
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Introduction

Central to empirical investigations into the information content of securities transactions,

their price formation, and their liquidity is the bid-ask spread. The bid-ask spread represents

the difference between the quotes of where market-makers stand ready to buy (bid-side) and

sell (ask-side aka ‘offered-side’) securities at a specific point in time and provides a rich

measure of liquidity as discussed in Amihud (2002). The absence of observable bid-ask

spreads for asset classes (due to infrequent recording) may compound their risk opacity.

This is often the case with infrequently traded securities as noted in Hasbrouck (2009) and

Fong, Holden and Trzcinka (2017). Sparser information, in turn, can exacerbate illiquidity

particularly in times of distress as discussed in Bao, O’Hara and Zhou (2018).

As an absolute value moving average estimator, the Thompson and Waller (1987) model

is one model that is well-defined for this purpose as discussed in He and Mizrach (2017). It

provides bid-ask spreads for all such end of day mid-market observations. In contrast, the

more sophisticated model of Roll (1984), which uses autocovariance of price changes, has the

well-known limitation of validity only for observations that exhibit negative autocovariance

between asset returns. This is because instances of positive autocovariance result in complex

numbers in the model formulation as noted in Lo and Wang (2000), and are thus undefined.

As I discuss, existing adaptations in the literature to Roll (1984) that are restricted to closing

prices (and no other data) result in either negative bid-ask spreads or omission of large

amounts of observations as observed in several studies. This is dissatisfying and motivates

this work.

In this paper I address this issue by providing a new adaptation of Roll (1984) which

is derived using imaginary numbers, and is defined as the Absolute Roll Measure, ŝ =

2
√
|−COV(∆Pt,∆Pt+1)|. This new measure of the effective bid-ask spread of securities

is fully generalizable and applicable to any traded asset, yielding strictly non-negative bid-

ask spreads. I empirically implement the Absolute Roll Measure, as well as three existing

approaches in the microstructure literature, to estimate daily bid-ask spreads for triple-A

(Aaa) rated and triple-B (Baa) US corporate bonds over the sample period 1/13/1986 -

7/1/2020. The initial results of the new methodology expand on an existing approach and
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resolves in existing issue in the literature. This should allow for more robust testing of

liquidity across asset classes, particularly those which do not have the benefit of intraday

pricing. Additionally, the contribution of this paper would allow for unfettered estimation

of bid/ask spreads intraday to be compared to more sophisticated models as discusseed in

O’Hara (1997) that develop following Roll (1984). This is left to future research.

The remainder of this paper is organized as follows: Section 1 discusses the data used in

this study. Section 2 positions the paper within the literature. Section 3 derives the Absolute

Roll Measure, while Section 4 provides the empirical implementation of bid-ask estimation

using the various models described. Section 5 provides statistical summary results for the

models. Section 6 concludes with suggestions for future work. The Online Appendix provides

supplementary information.

1 Data

In this section I discuss the data used throughout this study. I use 8629 daily time series

from the Federal Reserve Bank of St. Louis FRED system for the empirical implementations.

The sample period is 1/13/1986 thru 7/1/2020. These data include corporate bond credit

risk premia for Aaa and Baa corporate bond ratings. The credit risk premia on Aaa and

Baa corporate bonds are in excess of the 10 year constant maturity rate (CMT) US Treasury

yields. CMT yields thus represent the implied cost of new borrowing for a given maturity

at a given point in time. By extension, Aaa and Baa risk premia in excess of 10-year CMT

yields are also constant maturity and serve as a benchmark cost of new borrowing for a given

maturity and credit at a point in time.

2 Review of issues in the literature

This section considers some of the literature pertaining to bid-ask spreads determined from

closing prices.
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2.1 Roll (1984)

The seminal work on bid-ask spreads derived from closing end-of-day prices, Pt , is found in

Roll (1984).1 Briefly, as discussed in Lo and Wang (2000), solving for the effective bid-ask

spread, s

−s
2

4 =COV (∆Pt,∆Pt+1)

s2 =− 4COV(∆Pt,∆Pt+1)
√
s2 =

√
−4COV(∆Pt,∆Pt+1)

s = 2
√
−COV(∆Pt,∆Pt+1) (1)

yields a complex number when the first order autocovariance COV (∆Pt,∆Pt+1) > 0.

Roll (1984) and Harris (1990) address this problem by treating the value of s differently

in different domains. Following Harris (1990), values for s+ apply to instances of positive

autocovariance, while values for s− apply to instances of negative autocovariance, such that:

s =


s+ = −2

√
COV(∆Pt,∆Pt+1) for COV(∆Pt,∆Pt+1) > 0

s− = 2
√
−COV(∆Pt,∆Pt+1) for COV(∆Pt,∆Pt+1) ≤ 0

(2)

This choice has the effect, as noted in Lo and Wang (2000) of ‘preserving the sign of the

covariance’ in keeping with the empirical analyses of Roll (1984) and Harris (1990). However

this preservation of sign also results in negative effective bid-ask spread estimates, s, as shown

in Eq. (2). This is dissatisfying. Negative bid-ask spreads imply market-makers inverting

markets; standing ready to buy securities at higher prices than where they would sell them.

Such providing of liquidity would be ruinous and thus unrealistic.

One way to address this issue within the Roll (1984) framework is simply to drop (or

‘zero’) observations of positive autocovariance as suggested by Hasbrouck (2009) and Fou-

cault, Pagano and Roell (2013). This too is unsatisfying given the large number of observa-

tions that exhibit instances of positive autocovariance. Since instances of positive autoco-

variance are frequently observed in ranges of 28% to as much as 50% in prior studies, this
1Derived, following Harris (2003), in Section A.1 of the Online Appendix.
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issue warrants further investigation in this paper.

2.2 Thompson and Waller (1987)

Finally, an alternative bid-ask spread estimator model restricted to end of day closing prices

is introduced in Thompson and Waller (1987). Like Roll (1984), Thompson and Waller

(1987) also use end-of-day prices to estimate bid-ask spreads from the absolute value of

5-day moving averages of changes in end-of-day closing prices, (|∆pt| = 1
5
∑5
t=1 ∆pt). The

model is practical in that it guarantees a strictly non-negative bid-ask estimator result. It is

also actively utilized in policy and by practitioners, as discussed in He and Mizrach (2017).

3 Absolute Roll Measure

In this section I introduce a novel adaptation of Roll (1984) using imaginary numbers.

Claim. I claim the use of imaginary numbers within the radicand of Eq. (1) allows a new
measure for the effective bid-ask spread estimate based on Roll (1984) referred to as the
Absolute Roll Measure, and defined as:

ŝ = 2
√
|−COV(∆Pt,∆Pt+1)| (3)

Definition. Following Roll (1984), let the autocovariance of asset returns, s, be defined2

such that

s =


s+ = 2

√
−COV(∆Pt,∆Pt+1) for COV(∆Pt,∆Pt+1) > 0

s− = 2
√
−COV(∆Pt,∆Pt+1) for COV(∆Pt,∆Pt+1) < 0

sz = 2
√
−COV(∆Pt,∆Pt+1) for COV(∆Pt,∆Pt+1) = 0

(4)

with the imaginary number, i, defined3 as

i =
√
−1⇐⇒ i2 = −1 (5)

2This is motivated by Harris (1990) to ‘preserve the sign’ of the autocovariance, but carries different signs
for s+ inside and outside the radical.

3See Simon and Blume (1994).
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Conjecture. For s+,
s+ =2

√
-COV(∆Pt,∆Pt+1)

=2
√
-1×COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

> 0

=2
√
−1︸ ︷︷ ︸

= i

√
COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

> 0

=i× 2
√
COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

= y

Let x = 0 and y = 2
√
COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

> 0

, so by complex numbers

s+ =yi

with the complex conjugate of s+ defined as

s+ =− yi

and their product
s+s+ =− y2 i2︸︷︷︸

=−1

=− y2 ×−1
=y2

Taking the square root of both sides√
s+s+︸ ︷︷ ︸

=|s+|

=
√
y2

∣∣∣s+
∣∣∣ =y

=2
√
COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

> 0

∴

∣∣∣s+
∣∣∣ =2

√
COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

> 0
(6)

which is the distance of s+ from the origin, in the complex plane.

Similarly, for s−,
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s− =2
√
-COV(∆Pt,∆Pt+1)

=2
√
-1×COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

< 0

=2
√
-1×−1× COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

< 0

=2
√
−1×− 1︸ ︷︷ ︸

= 1

× COV(∆Pt,∆Pt+1)︸ ︷︷ ︸
> 0

=2
√
1×COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

> 0

=2
√
COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

> 0

=
∣∣∣s−∣∣∣ (7)

by absolute values, which is the distance of the real number, s− from the origin.

Finally, for sz,

sz =2
√
-COV(∆Pt,∆Pt+1)

=2
√
-1×COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

= 0

=2
√
-1×−1× COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

= 0

=2
√
−1×− 1︸ ︷︷ ︸

= 1

× COV(∆Pt,∆Pt+1)︸ ︷︷ ︸
= 0

=2
√
1×COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

= 0

=2
√
COV(∆Pt,∆Pt+1)︸ ︷︷ ︸

= 0

= |sz| (8)

by absolute values, which is the distance of the real number, sz from the origin, at the origin,

which is zero.

Solution. Eqs. (6 and 7) yield the result that |s+| = |s−|. The radicands for both Eqs.

(6 and 7) are shown to be COV (∆Pt,∆Pt+1) > 0. Post the evaluation with imagin-

ary numbers above and on the domain partitions in Eq. (4), for each of those radicands
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COV(∆Pt,∆Pt+1) = |COV(∆Pt,∆Pt+1)| allowing for substitution of |COV(∆Pt,∆Pt+1)|

for COV (∆Pt,∆Pt+1) in the radicands for Eqs. (6, 7 and 8) allowing them to be restated

as: ∣∣∣s+
∣∣∣ = 2

√
|COV(∆Pt,∆Pt+1)|for COV(∆Pt,∆Pt+1) > 0 (9)

∣∣∣s−∣∣∣ = 2
√
|COV(∆Pt,∆Pt+1)|for COV(∆Pt,∆Pt+1) < 0 (10)

|sz| = 2
√
|COV(∆Pt,∆Pt+1)|for COV(∆Pt,∆Pt+1) = 0 (11)

Since Eqs. (9, 10, and 11) yield the same value, it follows that

∣∣∣s+
∣∣∣ =

∣∣∣s−∣∣∣ = |sz| = 2
√
|COV(∆Pt,∆Pt+1)| for −∞ < COV(∆Pt,∆Pt+1) <∞ (12)

But

2
√
|COV(∆Pt,∆Pt+1)| = 2

√
|−COV(∆Pt,∆Pt+1)| for −∞ < COV(∆Pt,∆Pt+1) <∞

(13)

Therefore,

|s| = 2
√√√√|−COV(∆Pt,∆Pt+1)|︸ ︷︷ ︸

≥0

= s (14)

The absolute value of a non-negative number is simply the number itself. Since the radicand

in Eq. (14) is strictly non-negative, Eq. (14) equals Eq. (3), and thus |s| = s = ŝ for all

COV(∆Pt,∆Pt+1) through the use of imaginary numbers. As such, ŝ is the Absolute Roll

Measure, an adaptation of the effective spread of Eq. (1) with imaginary numbers. �

This Absolute Roll Measure, ŝ, guarantees a strictly non-negative bid-ask spread ob-

servable for all price changes in all traded asset markets. The Absolute Roll Measure, ŝ,

is the magnitude of s, regardless of whether s is real or imaginary. For observations where

COV(∆Pt,∆Pt+1) > 0, the interpretation is the corresponding effective bid-ask spread exists

in the complex plane.
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4 Model implementation

In this section I summarize an implementation of the four models above. I depict their

implementation for Aaa corporate bond risk premia in Figure 1 over the sample period.

The x-axis in the plots captures the range of values for the autocovariance while the y-axis

captures the range of values for the effective bid-ask spreads.

These time series of corporate bond risk premia are widely followed fixed-income bench-

marks. Since corporate bonds trade on a risk premium (spread) basis to corresponding

maturity risk-free rates I substitute the daily mark-to-market risk premia (aka ‘Spreads’),

St, in place of prices, Pt, for this estimate of the bid-ask spreads which, like Pt , are i.i.d.

This allows for the calculation of bid/ask spreads of Spreads, corresponding to how the

instruments are traded.

It is true that even with constant maturity (no aging, no cashflows) the modified duration

of the bonds will be different in each period by definition.4 As such, changes in risk premia

(as proxies for prices) would be technically valid only for one period in this time series.

However, in this initial study differences across the sample period vary only by about 1.50%

over thirty-four years. As such, in this initial study, for brevity I assume constant modified

durations across all time periods, allowing for changes in Spreads to be the object of inquiry.

This is reasonable. for constant maturity treasuries (and by implication, constant matur-

ity corporates) are constant across observations, autocovariances of changes to either risk

premia, St, or prices, Pt, adjusted for bond modified durations will yield the identical values

for bid-ask spreads under Roll (1984). This observation supports the assumption permitting

a direct assessment of fixed-income credit products which almost always trade on a Spread

to risk-free basis (and not a price basis). Future research can make further adjustments for

the durations corresponding to the instruments.

Since Roll (1984) and its adaptations (Models 1, 2 and 3) necessarily have the same

autocovariances, differences in depictions are only associated with differences in the model

adjustment choices. Although Model 4 (the moving average method of Thompson and Waller

(1987)) does not use autocovariance, since all autocovariances are temporal, I show Model 4
4SeeFabozzi (2007).
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bid-ask spreads corresponding to the same observation dates as the autocovariances for the

other three models. The autocovariances are used in Models 1, 2 and 3 are calculated over

a 5-day (1 trading week) period. Model 4 is also captured over a 5-day (1 trading week)

period.

4.1 Model summaries

In Model 1 (Roll), I implement Roll (1984) for end-of-day mid-market spread risk premia.

such that

st = 2
√
−COV(∆St,∆St−1) (15)

To address positive autocovariance in the implementation I follow Harris (1990) in Eq. (2)

st =


s+
t = −2

√
COV(∆St,∆St−1) for COV(∆St,∆St−1) > 0

s−t = 2
√
−COV(∆St,∆St−1) for COV(∆St,∆St−1) ≤ 0

(16)

which preserves the sign of autocovariance. Figure 1a captures Model 1 (Roll). There we

indeed observe negative bid-ask spreads corresponding to positive autocovariances.

In Model 2 (Restricted Roll) I restrict Model 1, by simply dropping (or ‘zeroing’) the

observations with positive autocovariance as suggested by Hasbrouck (2009) and Foucault,

Pagano and Roell (2013). Figure 1b shows an implementation of Model 2.5

In Model 3 (Absolute Roll), the Absolute Roll Measure for risk premia is given by

ŝt = 2
√
|−COV(∆St,∆St−1)| (17)

following the derivation in Section 3, culminating in Eq. (14). Figure 1c shows the imple-

mentation of Model 3 in Eq. (17). We see a strictly non-negative bid-ask spread for all Aaa

observations, as expected. The positive autocovariance values to the right of the origin on

the x-axis in Figure 1c exhibit positive bid-ask spreads on the y-axis in contrast to Figure
5In the statistical summary (available upon request) I provide both the zeroed version and the dropped

versions for convenience. Note that in any statistical analysis, only the restricted version dropping values
with positive autcovariance should be used, as artificial ‘zeroing’ could produce misleading statistical results.
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1a and Figure 1b.

In Model 4 (Thompson and Waller), I implement the model of Thompson and Waller

(1987) and restate their absolute value of 5-day moving average price changes using mid-

market credit spreads as

|∆St| =
1
5

5∑
t=1

∆St (18)

The bid-side spread is given by

Bt = St +
(
|∆St|

2

)
(19)

and the ask-side spread6 is given by

At = max (0, St − (Bt − St)) (20)

such that the bid-ask spread is given by

st = Bt − At (21)

Figure 1d shows the implementation of Model 4. It is interesting to see the contrast

between the Absolute Roll Measure depicted in Figure 1c and the model of Thompson and

Waller (1987) depicted in Figure 1d.
6The lower boundary of zero ensures offer side spreads cannot be negative. The boundary is never reached

in this study.
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Figure 1: Aaa bid-ask estimates

(a) Model 1: Roll (1984) (b) Model 2: Restricted Roll (1984)

(c) Model 3: Absolute Roll (d) Model 4: Thompson-Waller

While both models guarantee strictly non-negative bid-ask spreads, the underlying pro-

cesses yield different results.7I discuss this further below.

7Section A.2 in the Online Appendix shows the time series comparisons for Models 3 and 4 for Aaa and
Baa credits.
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5 Statistical summary

Table 1: Statistical summary: Aaa

Mid Market Model 1 Roll Model 2 RstrctRoll (zeroed) Model 2 RstrctRoll Model 3 AbsRoll Model 4 TW

mean 135.54 1.70 2.35 3.25 3.00 1.07

median 134.00 1.74 1.74 2.53 2.33 0.80

min 31.00 -20.98 0.00 0.00 0.00 0.00

max 320.00 42.83 42.83 42.83 42.83 22.20

var 2154.70 12.84 7.73 7.76 6.69 1.48

stdev 46.42 3.58 2.78 2.79 2.59 1.22

obs 8629 8623 8623 6240 8623 8623

Table 2: Statistical summary: Baa

Mid Market Model 1 Roll Model 2 RstrctRoll (zeroed) Model 2 RstrctRoll Model 3 AbsRoll Model 4 TW

mean 233.46 1.51 2.18 3.04 2.85 1.15

median 221.00 1.55 1.55 2.30 2.15 0.80

min 116.00 -32.01 0.00 0.00 0.00 0.00

max 616.00 26.14 26.14 26.14 32.01 20.80

var 5151.09 12.38 7.15 7.37 6.56 1.84

stdev 71.77 3.52 2.67 2.71 2.56 1.36

obs 8629 8623 8623 6188 8623 8623

Consistent with the earlier findings of Roll (1984), Harris (1990) and Hasbrouck (2009) I

also find positive autocovariance to be frequently observable in this study. In my sample of

8623 autocovariance observations of Aaa and Baa corporate bond risk premia, 2383 (27.64%)

of the Aaa observations and 2435 (28.24%) of the Baa observations exhibited positive auto-

covariance. Use of Model 1 would result in a substantial number of negative bid-ask spreads,

while Model 2 would result in substantial elimination of observations for those percentages

over the sample period. In contrast, Models 3 and 4 provide strictly non-negative effective

bid-ask spread estimates. Table 1 and Table 2 provide statistical summaries for the observed

mid-market risk premia and the Model determined bid-ask spreads, for Aaa and Baa cor-

porate credit risk premia, respectively. A few interesting observations from those tables are

worth highlighting.

Model 1, for example shows negative minimum bid-ask spreads for Aaa and Baa, while
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Model 2 shows minimum bid-ask spreads of zero. Additionally, median statistics of Models 1

and 2 are identical. These findings are as expected. Conventional wisdom for the mid-market

observations is confirmed with Baa credits exhibiting greater and more volatile risk premia

than Aaa credits.

Interestingly, this is not echoed in the effective bid-ask spreads produced by the models.

Models 1, 2 and 3 show Baa bid-ask spreads to be less volatile than Aaa credits. This

contrasts with the statistics for Model 4, which may be due to differences in methodologies.

Further, Model 4 exhibits categorically lower bid-ask maximums. Comparing Models 3 and

4, I find Model 3 exhibits wider bid-ask spreads than Model 4 in 88.01% and 84.52% of the

cases for Aaa and Baa securities, respectively.8

Perhaps most interesting is the comparison among the maximums for bid-ask spreads

across credit ratings. Categorically, across all models, Aaa credits exhibit wider maximum

bid-ask spreads than Baa credits. The comparatively more ‘fragile’ and less liquid charac-

teristic found in Aaa credits is a surprising and rich finding. These findings should motivate

future research.

6 Summary

The introduction of the Absolute Roll Measure in this paper addresses a confounding issue in

the microstructure literature. The new method addresses the issue of positive autocovariance

in Roll (1984) and eliminates the need to drop large numbers observations as it produces

strictly non-negative bid-ask spreads as is also found in Thompson and Waller (1987) which

yields different results. This paper provides a robust and practical method for liquidity

assessment in the microstructure context where pricing information is limited. Expansions of

this approach with more recent developments in the microstructure literature that rely upon

intraday data may also be made with this methodology given adequate pricing information,

intraday. Overall, the Absolute Roll Measure may increase our understanding of liquidity,

particularly in those sectors that are limited to end of day pricing information such as many

instruments in the US structured finance market such as CMBS, CMBX, CRE-CDOs and
8Section A.2 in the Online Appendix shows the time series comparisons for Models 3 and 4 for Aaa and

Baa credits.
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others which is left to future work.
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A Online Appendix for ‘The Absolute Roll Measure’

A.1



A.1 Derivation of Roll (1984) following Harris (2003)

For any time t, let Pt be the observed price and Vt the fundamental price (aka ‘fair-value’)

that follows a random walk with εt an i.i.d. white noise process ∼ N (0, σ2). The temporal

indicator of ‘Buy’ or ‘Sell’ of an asset from the market maker’s perspective, Qt,is thus defined

as

Qt =


+1, ‘Buy’with Probability = p =

(
1
2

)
−1, ‘Sell’with Probability = 1− p =

(
1
2

) (22)

Taking expectations,

E[Qt] =
(1

2

)
(1) +

(1
2

)
(−1) = 0 (23)

and

E[Q2
t ] =

(1
2

)
(12) +

(1
2

)
(−12) = 1 (24)

The market price, is composed of the fair value and the ‘effective’ bid-ask spread, S, such
that,

Pt = Vt +Qt

(1
2

)
S (25)

with changes in market prices given by

∆Pt = ∆Vt︸︷︷︸
=εt

+ ∆Qt

(1
2

)
S (26)

which implies

∆Pt = ∆Qt

(1
2

)
S + εt (27)

The mean of the change in price is determined by

A.2



E[∆Pt] =E
[
∆Qt

(1
2

)
S + εt

]

=E
[
∆Qt

(1
2

)
S
]

+ E

 εt︸︷︷︸
=0


=
(1

2

)
SE [∆Qt]

=
(1

2

)
SE [Qt −Qt−1]

=
(1

2

)
S

E [Qt]︸ ︷︷ ︸
=0

− E [Qt−1]︸ ︷︷ ︸
=0


=0

(28)

The variance of the change in price is determined by

V ar[∆Pt] =E
[
∆Qt

(1
2

)
S + εt

]
=E

[(
∆Qt

(1
2

)
S + εt

)2]

=E
[
ε2
t + 2εt∆Qt

(1
2

)
S + ∆Q2

t

(1
4

)
S2
]

=E
[
ε2
t

]
+ E

[
2εt∆Qt

(1
2

)
S
]

+ E
[
∆Q2

t

(1
4

)
S2
]

=E
[
ε2
t

]
︸ ︷︷ ︸

=σ2
ε

+ SE [εt∆Qt]︸ ︷︷ ︸
=0

+
(1

4

)
S2E

[
∆Q2

t

]

=σ2
ε +

(1
4

)
S2E

[
(Qt −Qt−1)2

]
=σ2

ε +
(1

4

)
S2E

[
Q2
t − 2QtQt−1 +Q2

t−1

]

=σ2
ε +

(1
4

)
S2

E
[
Q2
t

]
︸ ︷︷ ︸

=1

− E [2QtQt−1] + E
[
Q2
t−1

]
︸ ︷︷ ︸

=1


=σ2

ε +
(1

4

)
S2

1− 2E [Qt]︸ ︷︷ ︸
=0

E [Qt−1]︸ ︷︷ ︸
=0

+ 1


=σ2

ε +
(1

2

)
S2

(29)

All Qt−k are independent ∴ E [QtQt−k] = E [Qt]E [Qt−k] = 0 for k > 0. As such, the

autocovariance of serial changes in price, COV (∆Pt,∆Pt−1), is determined by
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COV(∆Pt,∆Pt−1) =E


∆Pt − E [∆Pt]︸ ︷︷ ︸

=0


∆Pt−1 − E [∆Pt−1]︸ ︷︷ ︸

=0




=E [(∆Pt) (∆Pt−1)]

=E
[(

∆Qt

(1
2

)
S + εt

)(
∆Qt−1

(1
2

)
S + εt−1

)]
=E

[
εtεt−1 + εt

(1
2

)
S∆Qt−1 + εt−1

(1
2

)
S∆Qt +

(1
4

)
S2∆Qt∆Qt−1

]
=E [εtεt−1]︸ ︷︷ ︸

=0, by ind.

+
(1

2

)
SE [εt∆Qt−1]︸ ︷︷ ︸

=0, by ind.

+
(1

2

)
SE [εt−1∆Qt]︸ ︷︷ ︸

=0, by ind.

+
(1

4

)
S2E [∆Qt∆Qt−1]

=
(1

4

)
S2E [(Qt −Qt−1) (Qt−1 −Qt−2)]

=
(1

4

)
S2E

[
QtQt−1 −QtQt−2 −Q2

t−1 +Qt−1Qt−2
]

=
(1

4

)
S2

E [QtQt−1]︸ ︷︷ ︸
=0

− E [QtQt−2]︸ ︷︷ ︸
=0

− E
[
Q2
t−1

]
+ E [Qt−1Qt−2]︸ ︷︷ ︸

=0


=−

(1
4

)
S2E

[
Q2
t−1

]
︸ ︷︷ ︸

=1

=−
(1

4

)
S2

(30)
Rearranging Eq. (30) gives

−
(1

4

)
S2 =COV(∆Pt,∆Pt−1)

S2 =− 4COV (∆Pt,∆Pt−1)

S =
√
−4COV (∆Pt,∆Pt−1)

S =2
√
−COV(∆Pt,∆Pt−1)

(31)

which is the effective bid-ask spread S introduced in Roll (1984).9 �
9As previously stated in Eq. (1) in the main text.
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A.2 Time series of estimated bid-ask spreads

Figure 2: Estimated bid-ask spreads (1986 - 2020, daily)

(a) Estimated Aaa bid-ask spreads

(b) Estimated Baa bid-ask spreads
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