Curriculum Vitae

Dr. Emil Prodan
Assistant Professor
Physics Department

Yeshiva University
Office room: 510
245 Lexington Avenue
New York, NY 10016
Tel: 212 340 7831
E-mail: prodan@yu.edu 

Education: 

  • Aug. 2004-Aug. 2005: Postdoctoral training, University of California Santa Barbara and University of Southern California (advisors: Walter Kohn and Priya Vashishta)
  • Aug. 2003-Aug. 2004: Postdoctoral training, University of California Santa Barbara(advisor: Walter Kohn, Nobel Laurate)
  • April 2003: PhD, Rice University, Theoretical Physics (Advisor: Peter Nordlander)
  • May 1999: MS, University of Houston, Theoretical Physics
  • June 1996: MS, University of Bucharest, Mathematical Physics (Advisor: Gheorghe Nenciu)
  • June 1995: BS, University of Bucharest, Theoretical Physics (BS Thesis: Topological Analysis of Gauge Fields)

 

Employment: 

  • Aug. 2007-present: Assistant Professor, Yeshiva University
  • Aug. 2005-Aug. 2007: Fellow of the Princeton Center for Complex Materials (Sponsors: Roberto Car and Duncan Haldane)

 

Funding: 

  • 2011-2016: NSF-DMR-1056168 ($425,000): "CAREER: Strong Disorder and Electron Interaction Effects in Topological Insulators"
  • 2011-2014: NSF-DMS-1066045 ($331,314): "FRG: Dynamical Processes in Many-Body Systems: Analysis and Simulations"
  • 2008-2011: Cottrell Science Award ($54,000) "Molecular Electronics Program at Stern College"

 

General Interests: 

Finding connections between various fields of pure mathematics and the physics of condensed matter. Use such connections to search for robust and rigorous solutions to various problems in condensed matter physics and develop robust and efficient numerical methods in order to link the theoretical ideas with concrete experimental realities.

Theoretical Projects: 

  • Applications of the Non-Commutative Calculus in condensed matter physics.
  • Search and discovery of topological condensed matter systems.
  • Investigations of the Riemann surface of the energy bands in periodic crystals.
  • Contributions to the modern theory of tunneling transport in molecular chains.
  • Investigations of the non-Abelian statistics for the 5/2 Fractional Hall state.
  • Studies on the nearsightedness of matter.
  • Studies on the fundamental properties of various self-consistent models of the condensed matter, notably Density Functional Theory and Hartree approximation.
  • Studies in Constructive Field Theory.
  • Developed the "plasmon hybridization theory" in complex nano-structures.
  • Developed models and explicit solutions for the electromagnetic response of live cells in suspensions.

 

Numerical Projects: 

  • Designed efficient algorithms to implement the Non-Commutative Calculus, notably to compute non-commutative topological invariants.
  • Explored the phase diagram of strongly disordered topological insulators.
  • First principle simulations in molecular charge transport.
  • First principle simulations of the electronic structure and optical response of nano-structures.

 

Academic Awards: 

  • 2008: Research grant award from Research Corporation for Science Advancement.
  • 2005-2007: Princeton Center for Complex Materials Postdoctoral Fellowship
  • 2000-2003: Robert A. Welch Foundation fellowship
  • 2000: Chuoke Award for academic and research performance, Rice University
  • 1989: Bronze Medal at the Romanian National Physics Olympiad competition
  • 1989: 6-th member of the Romanian team at the International Physics Olympiad

 

Referee services:

I review a substantial number of papers each year for quite a number of journals. I also reviewed grant proposals from DOE and NSF.

Memberships in professional associations: 

  • American Physical Society (APS) since 2000.
  • Society for Industrial and Applied Mathematics (SIAM) since 2010.

 

Invited talks:

30. The Kohn-Sham Map for Electronic Structure Calculations, Jiao Tong University, Shanghai, China, June 2011.
29. First principle simulations of topological insulators: Fundamental challenges, Banff International Research Station for Mathematical Innovation and Discovery, Jan 2011
28. Modern theory of molecular tunneling transport, SIAM Conference on Mathematical Aspects of Materials Science (MS10), May 2010
27. Topological insulators from a Non-Commutative Geometry perspective, Cond. Mat. Seminar at Princeton University, May 2010
26. Topology and Non-Commutative Geometry in Modern Condensed Matter Research, Cond. Mat. Seminar at City College of New York, March 2010
25. Non-commutative calculus and quantization of ensemble averages, Applied Mathematics Seminar, UC Santa Barbara, April. 2009
24. Modern theory of molecular tunneling transport, Physics Colloquium, New Jersey Institute of Technology, Feb. 2009
23. Modern theory of molecular tunneling transport, Physics Colloquium, California State University, Feb. 2009
22. On the Mathematical Structure of the Kohn-Sham Self-Consistent Map, Applied Mathematics Seminar, Princeton University, Nov. 2008
21. The mathematical structure of the Kohn-Sham equations, Internal Seminars of the Institute for Mathematics and its Applications, University of Minnesota, Oct. 2008
20. Tunneling conductance of molecular wires, 2008 Electronic Structure Workshop, Univ. of Illinois, Urbana-Campaign, June. 2008.
19. Transport characteristics of molecular chains, DFT Meeting, Princeton, Oct. 2007.
18. Complex Analytic Structure of the Bands in Periodic Molecular Chains, CECAM Lyon, June 2007.
17. Charge Transport in Molecular Chains, Trieste Workshop to honor Roberto Car's 60th birthday, June 2007.
16. Transport Characteristics of Molecular Wires, Cond. Mat. Seminar, Rice University, March 2007.
15. Transport Characteristics of Molecular Wires, Physics Colloquium, Univ. of New Hampshire, Feb. 2007.
14. Mapping the Braiding Properties of Non-Abelian Fractional Quantum Hall Liquids, Physics Colloquium, Univ. of Washington St. Louis, Feb. 2007.
13. DC conductance of molecular devices, Physics Colloquium, Univ. of South Carolina, Feb. 2007.
12. DC conductance of molecular devices, Physics Colloquium, Louisville Univ., Feb. 2007.
11. DC conductance of Long Molecular Wires, Cond. Mat. Seminar, University of Missouri-Columbia, Jan. 2007.
10. Mapping the Braiding Properties of Non-Abelian Fractional Quantum Hall Liquids, Physics Colloquium, Yeshiva Univ., Jan. 2007.
9. The Analytic Structure of Bloch Functions, Mathematical Physics Seminar, Princeton University, November 2006.
8. Non-Equilibrium Dynamics of Electrons in Molecular Devices, Physics Colloquium, New Jersey Inst. of Tech., Spring 2006.
7. New insight into the properties of periodic systems, Physics Colloquium, New Jersey Inst. of Tech., Fall 2005.
6. Periodic systems: New insight into their properties, Cond. Mat. Seminar, Rice Univ., 2005.
5. On the analytic structure of Bloch functions, D. Vanderbilt's Seminar, Rutgers Univ., 2005.
4. Nearsightedness of Electronic Matter: The basis for O(N) electronic structure calculations, Cond. Mat. Seminar, Univ. of Southern California, 2005.
3. Quantum mechanics with millions of atoms, Physics Colloquium, Univ. of Texas, El Paso, 2005.
2. Nearsightedness of Electronic Matter, Lawrence Livermore National Lab, 2005.
1. Nearsightedness of Electronic Matter, Physics Colloquium, California State Univ. Northridge, 2004.

Peer reviewed publications (more than 1900 total citations): 

2011
6. D. Shulman and E. Prodan, Robust extended states in a topological bulk model with even spin-Chern invariant, under review by Phys. Rev. Lett.
5. E. Prodan, Manifestly gauge independent formulations of the Z2 invariants, Phys. Rev. B 83, 235115 (2011). (Editor's Suggestion)
4. T. L. Hughes, E. Prodan and B. A. Bernevig, Inversion symmetric topological insulators, Phys. Rev. B 83, 245132 (2011).
3. E. Prodan, Three-dimensional phase diagram of disordered HgTe/CdTe quantum spin-Hall wells, Phys. Rev. B 83, 195119 (2011). (Editor’s Suggestion + Synopsis)
2. E. Prodan, Disordered topological insulators: A non-commutative geometry perspective, J. Phys. A: Math & Theor 44, 113001 (2011). (Topical Review)
1. N. Berg, K. Joel and M. Koolyk and E. Prodan, Topological phonon modes in filamentary structures, Phys. Rev. E 83, 021913 (2011).

2010
5. E. Prodan, Raising the temperature on Density Functional Theory, Physics 3, 99 (2010).
4. J. Zuloaga, E. Prodan and P. Nordlander, Quantum Plasmonics: Optical properties and tunability of metallic nanorods, ACS Nano 4, 5269 (2010).
3. E. Prodan, T.L. Hughes and B.A. Bernevig, Entanglement spectrum of a disordered topological Chern insulator, Phys. Rev. Lett. 105, 115501 (2010).
2. E. Prodan, Non-commutative tools for topological insulators, New J. Phys. 12, 065003 (2010).
1. E. Prodan and A. LeVee, Tunneling devices with semi-conducting leads, Phys. Rev. B 81, 085307 (2010).

2009
8. E. Prodan and C. Prodan, Topological phonon modes and their role in dynamic instability of microtubules, Phys. Rev. Lett. 103, 248101 (2009).
7. E. Prodan and F.D.M. Haldane, Mapping the braiding properties of the Moore-Read state, Phys. Rev. B 80, 11512 (2009) [selected as Editor’s choice].
6. E. Prodan, Robustness of the Spin-Chern number, Phys. Rev. B 80, 125327 (2009). [selected by Virtual J. Nanoscale Sci. & Techn.]
5. E. Prodan, The edge spectrum of Chern insulators with rough edges, J. Math. Phys. 50, 083517 (2009).
4. E. Prodan and R. Car, Theory of tunneling transport in periodic chains, Phys. Rev. B 80, 035124 (2009).
3. J. Zuloaga, E. Prodan and P. Nordlander, Quantum description of the plasmon resonances in a nanoparticle dimer, Nano Letters 9, 887-891 (2009).
2. E. Prodan, An edge Index for the Quantum Spin Hall Effect, Journal of Phys. A: Math. Theor. 42 082001 (2009) [Fast Track Communication].
1. E. Prodan, Topological quantization of ensemble averages, Journal of Phys. A: Math. Theor. 42, 065207 (2009).

2008
3. E. Prodan, C. Prodan and J.H. Miller, The dielectric response of spherical live cells in suspension: An analytic solution, Biophysics Journal 95, 4174 (2008).
2. J. Wang, E. Prodan, R. Car and A. Selloni, Band alignment in molecular devices: Influence of anchoring group and metal work function, Phys. Rev. B 77, 245443 (2008) [selected by Virtual J. Nanoscale Sci. & Techn.]
1. E. Prodan and R. Car, Tunneling conductance of amine linked alkyl chains, Nano Letters 8, 1771 (2008).

2007
1. E. Prodan and R. Car, DC Conductance of Molecular Wires, Phys. Rev. B 76, 115102 (2007).

2006
3. E. Prodan, Nearsightedness of electronic matter in one dimension, Phys. Rev. B 73, 085108 (2006).
2. E. Prodan, Analytic structure of Bloch functions for linear molecular chains, Phys. Rev. B 73, 035128 (2006).
1. E. Prodan, R. Garcia and M. Putinar, Norm estimates of complex symmetric operators applied to quantum systems, J. Phys. A: Math. and Gen. 39, 389-400 (2006).

2005
2. E. Prodan and W. Kohn, Nearsightedness of electronic matter, Proc. Natl. Acad. Sci. 102, 11635-11638 (2005).
1. E. Prodan, Symmetry breaking in the self-consistent Kohn-Sham equations, J. Phys. A: Math. and Gen. 38, 5647-5657 (2005).

2004
1. P. Nordlander and E. Prodan, Plasmon hybridization in nanoparticles near metallic surfaces, Nano Lett. 4, 2209-2213 (2004).
2. P. Nordlander, C. Oubre, E. Prodan, K. Li and M.I. Stockman, Plasmon hybridization in nanoparticle dimers, Nano Lett. 4, 899-903 (2004).
3. E. Prodan and P. Nordlander, Plasmon hybridization in spherical nanoparticles, J. Chem. Phys. 120, 5444-5454 (2004).

2003
7. E. Prodan, C. Radloff, N.J. Halas and P. Nordlander, A hybridization model for the plasmon response of complex nanostructures, Science 302, 419-422 (2003) [selected by Virtual J. Nanoscale Sci. & Techn.]
6. E. Prodan, P. Nordlander and N.J. Halas, Electronic structure and optical properties of gold nanoshells, Nano Lett. 3, 1411-1415 (2003).
5. E. Prodan and P. Nordlander, Structural tunability of the plasmon resonances in metallic nanoshells, Nano Lett. 3, 543-547 (2003).
4. E. Prodan, N.J. Halas and P. Nordlander, Effects of dielectric screening on the optical properties of metallic nanoshells, Chem. Phys. Lett. 368, 94-101 (2003).
3. E. Prodan and P. Nordlander, On the Kohn-Sham equations with periodic background potentials, J. Stat. Phys. 111, 967-992 (2003).
2. P. Nordlander and E. Prodan, Electronic structure and optical properties of metallic nanoshells, Proc. SPIE 5221, 151-163 (2003).
1. E. Prodan: Theoretical investigations of the electronic structure and optical properties of metallic nanoshells, PhD Thesis, Rice University, (2003).

2002
3. E. Prodan, Allen Lee and P. Nordlander, The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells, Chem. Phys. Lett. 360, 325-332 (2002).
2. E. Prodan and P. Nordlander, Electronic structure and polarizability of metallic nanoshells, Chem. Phys. Lett. 352, 140-146 (2002).
1. P. Nordlander and E. Prodan, Optical properties of metallic nanoshells, Proc. SPIE 4810, 91-98 (2002).

2001
4. E. Prodan and P. Nordlander, Exchange and correlations effects in small metallic nanoshells, Chem. Phys. Lett. 349, 153-160 (2001).
3. E. Prodan and P. Nordlander, Hartree approximation I: The fixed point approach, J. Math. Phys. 42, 3390-3406 (2001).
2. E. Prodan and P. Nordlander, Hartree approximation II: The thermodynamic limit, J. Math. Phys. 42, 3407-3423 (2001).
1. E. Prodan and P. Nordlander, Hartree approximation III: The symmetry breaking, J. Math. Phys. 42, 3424-3438 (2001).

2000
5. J. H. Miller, C. Ordonez and E. Prodan, Time-Correlated Soliton Tunneling in Charge and Spin Density Waves, Phys. Rev. Lett. 84, 1555-1558 (2000).
4. E. Prodan, Cluster Expansion: Explicit Estimates, J. Math. Phys. 41, 787-804 (2000).
3. JH. Miller, E. Prodan, R.K. Chu and C. Ordonez, Time-correlated tunneling of solitons in charge and spin density waves, Physica C 341, 763-764 (2000).
2. C. Prodan, J.R. Claycomb, E. Prodan and JH. Miller), High-Tc SQUID-based impedance spectroscopy of living cell suspensions, Physica C 341, 2693-2694 (2000).
1. J.H. Miller, C. Ordonez and E. Prodan, Time-correlated macroscopic quantum tunneling of density wave solitons,å Physica B. 284, 1898-1899 (2000).

1999
4. E. Prodan, Spontaneous Transitions in Quantum Mechanics, J. Phys. A: Math. and General 32, 4877-4881 (1999).
3. E. Prodan, Transfer matrices for scalar fields on curved spaces, J. Math. Phys 40, 1400-1405 (1999).
2. C. Prodan and E. Prodan, The Dielectric behavior of living cell suspensions, J. Phys. D: Applied Physics 32, 335-343 (1999).
1. J.H. Miller, C. Ordonez and E. Prodan, Theory of time-correlated tunneling of density wave solitons, Journal de Physique IV. 9, 171-173 (1999).

1998
1. E. Prodan, The Laplace-Beltrami operator on surfaces with axial symmetry, J. Phys. A: Mathematical and General 31, 4289-4300, (1998).

1996
1. E. Prodan: The Laplace-Beltrami operator on closed, 2-dimensional Riemannian surfaces, Master Thesis, Univ. of Bucharest, (1996).

1995
1. E. Prodan: Topological analysis of the Gauge Fields, BS Thesis, Univ. of Bucharest, (1995).